Nuclear Astrophysics With Tandem Accelerators

Michael A. Famiano
Western Michigan University
DUSEL Workshop
November 3, 2007

Areas of Astrophysical Interest Accessible With Stable Beams

p,γ-Process Studies

p-Process nuclei (p,γ) cross-sections Activation technique.

Noise and background are compensated for by relatively large σ .

Total charge < 1mC

Very Low σ: CNO Cycle

High intensity useful for timely completion of measurement.

Extremely low background is **essential** for **successful** completion of experiment.

S-Factors measured In single keV-b

 $^{14}N(p,\gamma)^{15}O$ at $119 < E_{cm} < 367 \text{ keV}$ Imbriani et al. (2005)

Radiative Capture Cross Sections and Others

- Forward Kinematics/Direct Measurements
 - ³He(α,γ)⁷Be
 - ⁷Be(p, γ)⁸B
 - $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$: Triple α

Solar Burning and Neutrinos

- Indirect Methods
 - ¹²C(α , γ)¹⁶O: Triple α
- Other Important Reactions
 - ²²Ne(α ,n)²⁵Mg
 - ²²Ne(p, γ)²³Na
- Hot CNO breakout
 - $^{15}O(\alpha, \gamma)^{19}Ne$
 - ¹⁸Ne(α,p)²¹Na ←
 - ${}^{17}O(p,\gamma){}^{18}F$

Inverse kinematic (breakup) difficult Due to beam-induced background. Separation of products more difficult, Especially with high current?

Beam-induced background!

IBBN Studies: Solenoid?

⁸Li(d,α)⁶He cross section using silicon surface barrier detectors. Coverage can be greatly improved with thin silicon strip detectors with a possible reduction in beam-induced background with limited space.

BBN reaction, controls ⁶Li abundance in Inhomogeneous models.

Possibilities: Low energy secondary beams for astrophysically interesting reactions. E.G., ⁸Li(d,α)⁶He Sahin et al. (PRC 65, 38801)

Light Curve Dependence During Ignition

Wiescher et al. 2002

Lighter mass nuclei during ignition stages of rp-process largely ignored.

- (p,γ) reaction on ⁴⁵⁻⁴⁷V, ⁴⁹Mn Knowledge of these nuclei, including level structure and S_p with σ <~50keV

Wish List

- "Minimal" requirements
 - Tandem/pelletron accelerator with a few beamlines
 - Up to ~10 MV
 - Users bring their own equipment
- Secondary additional components
 - Complement of permanent on-site detection "equipment"
 - Reduction of beam-induced background
- Enhanced capabilities
 - RI beam capabilities
 - Solenoid spectrometer?
 - Neutron TOF area

More Difficult

- Reaction and cross-section studies
 - Specific interest: (α,n) cross-sections
 - Nobody is really tackling this problem with vigor.
 - Early stages of r-Process
 - Technical issues with a direct measurement
 - Neutron detection
 - Could be quite simple
 - Maybe require liquid
 - Requires α target
 - Sufficient rates
- Still some structure relevant to the hot-CNO breakout
- Maybe some p-process studies.
 - Lifetimes of p-process nuclei
 - Done at ND-NSL and Argonne

Level Structure

- Particularly interested in high E* states (~3-5MeV) of interest to hot CNO breakout and early ignition
 - (p,γ): Good resolution, gamma detection, low reaction rates
 - Transfer: Need high N for good widths
 - Mirror nuclei studies: (d,p), Single-particle S.F.,
 ANC's
 - (p,p'): Tougher analysis, need high N (TUDA)
 - Reactions and rates
 - (α ,p) reaction: Inverse kinematics

Possible Experiments

- Further mass measurements along rp-process path (or S_p)
 - E.g. ⁵⁶Cu, ⁶¹Ga (near endpoint of rp-process path)
 - Also, A≤56 (Wiescher et al. 2002)
 - Possible with current TAMU upgrade
 - Increased sensitivity with re-accelerated beams
- In many cases, uncertainty reduction is desired
- Ignition reactions: αp-Process, Hot CNO breakout, NeNa, MgAl
 - E.g. Reaction rates in inverse kinematics
 - May require very low energies for study of the inverse reaction
 - However, levels and cluster structure studies are not precluded